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ABSTRACT

The ubiquity of digital color image content continues to raise
consumer technological awareness and expectations, and places a
greater demand than ever on algorithms that support color image ac-
quisition for mobile devices. In this paper we consider the key signal
processing challenges to advancing the digital camera pipeline for
mobile multimedia, with a particular focus on advances that have the
potential to enhance image quality and reduce overall cost and power
consumption. We first examine key technical challenges to pipeline
design presented by demands such as shrinking device footprints, in-
creasing throughput, and enhancing color fidelity. We then describe
a recently introduced analytical framework based on spatio-spectral
sampling for color image acquisition, and discuss its potential im-
plications for quality and cost improvements. We then describe a
number of resolution-distortion trade-offs, in particular noise pro-
cesses and crosstalk, and show via simulation how a spatio-spectral
acquisition framework helps to pinpoint aspects of pipeline design
that can enhance computational efficiency and performance simulta-
neously.

Index Terms— image sensors, image sampling, image recon-
struction, image denoising, image color analysis

1. INTRODUCTION

With the annual sales of mobile phones projected to exceed one bil-
lion handsets by 2009, mobile multimedia is well positioned to be-
come a mainstream platform for entertainment. Despite narrowing
profit margins and increased competition, the growing ubiquity of
digital multimedia drives the demands for increased throughput and
improved image quality in color imaging devices. Low-cost and low-
power hardware designs nevertheless top the list of priorities for the
mobile phone industry, and in this respect signal-processing solu-
tions offer attractive benefits and cost savings that cannot be ignored.

In this paper we develop a signal processing perspective on the
future of the digital camera pipeline, with a particular focus on the
advances that have the potential to enhance image quality and reduce
overall cost and power consumption. Our interest lies in quantifying
the trade-offs between performance and complexity—and we do so
not by explicit comparisons of digital camera pipelines, but by con-
sidering the imaging system’s resilience to noise, aliasing, and arti-
facts that make the subsequent data processing steps more compli-
cated and expensive. Given that mushrooming data rates pose addi-
tional computational, transmission, and storage challenges that can-
not be solved by the advances in hardware alone, this type of analysis
presents opportunities for new contributions in low-complexity low-
cost digital camera designs through signal processing advancements.

For example, the inherent shortcomings of color filter array de-
signs mean that subsequent processing steps often yield diminishing

returns in terms of image quality, and in our previous work we pro-
posed a novel acquisition scheme that preserves the integrity of the
signal during acquisition [1]. Shrinking the device footprint is an-
other important step toward increasing the pixel sensor count in a
cost-effective manner—a trend partly fueled by the popular percep-
tion that higher spatial resolution necessarily leads to better image
quality. The device footprint reduction problem is complicated by
the problems such as noise and crosstalk that are difficult to model
and quantify [2–5]. As the image sensor represents the first step in
the digital camera pipeline, it largely determines the image quality
achievable by subsequent processing schemes.

In this paper we offer a signal processing framework for un-
derstanding the resolution-distortion trade-offs, its implications for
the complexity of the subsequent processing steps, and the possi-
bilities for future improvements. Our analysis extends the spatio-
spectral sampling theory for color image acquisition that provides
insight into the trade-offs between the effective resolution and de-
gree of degradation due to aliasing [1]. In particular, we present a
signal processing perspective on the components of the digital cam-
era pipeline, such as sampling, noise, crosstalk, and reconstruction,
and evaluate its expected performance using the prior knowledge of
image signals.

2. BACKGROUND

2.1. Review: Color Image Sensor

In this section, we review components of the image sensor that play
important roles in determining overall limits in achievable image
quality relative to subsequent processing steps. Let x(t) =
[xr(t), xg(t), xb(t)] be the RGB tristimulus value of the desired
continuous color image signal at spatial location t ∈ R

2. Each
pixel sensor is equipped with a microlens, an optical MEMS de-
vice designed to increase the fill factor (area of the spatial integra-
tion) by locally focusing the light away from circuitries and toward
the regions of the pixel sensor that are photosensitive. Given a spa-
tial sampling interval τ for the sensor, the integrated light x(n) =
[xr(n), xg(n), xb(n)] at pixel location n ∈ Z

2 is:

x(n) =

⎡
⎣{h ∗ xr}(τn)
{h ∗ xg}(τn)
{h ∗ xb}(τn)

⎤
⎦ , (1)

where ‘∗’ indicates convolution and h(t) is a filter that represents a
spatial integration over the pixel sensor. The photons collected by the
microlens must then penetrate through color filter before reaching
the photosensitive element of the sensor. CMOS photo diode active
pixel sensors measure the intensity of the light using a photo diode
and three transistors, all major sources of noise [6]. CCD sensors, on
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the other hand, rely on the electron-hole pair that is generated when
a photon strikes silicon [7].

A color filter array (CFA) is a physical construction whereby the
spectral components of the light are spatially multiplexed—that is,
each pixel location measures the intensity of the light corresponding
to only a single color [8]. Let c(n) =
[cr(n), cg(n), cb(n)] represent the CFA color combination corre-
sponding to x(n), and dr and db be the DC components of cr and
cb. If cr + cg + cb = λ for some constant λ, then light penetrating
the color filter may be written as:

y(n) = c(n)T x(n) = λ[cα(n), 1, cβ(n)]

⎡
⎣xα(n)

x�(n)
xβ(n)

⎤
⎦ , (2)

where xα = xr − xg , xβ = xb − xg are difference images, x� =
xg + drxα + dbxβ is a baseband component, and cα = cr − dr and
cβ = cb − db are modulation carrier frequencies [1]. The advan-
tage of the {xα, x�, xβ} representation is the difference images en-
joy rapid spectral decay away from their center frequencies, whereas
baseband copy x� embodies the edge and texture information; more-
over, {xα, x�, xβ} are generally observed to be only weakly corre-
lated [9].

While a detailed investigation of noise sources is beyond the
scope of this paper, studies suggest that z(n), the number of pho-
tons encountered during a spatio-temporal integration, is a Poisson

process denoted as z(n)|y(n)
i.i.d.∼ P(k ·y(n)), where k is a propor-

tionality constant that scales linearly with the integration time and
surface area of pixels and lens. Note E[z|y] = ky, Var(z|y) = ky,
and when ky sufficiently large, p(z|y) converges weakly to the nor-
mal distribution N (

ky, ky
)
. In practice, the photo diode charge (e.g.

photodetector readout signal) is assumed proportional to z(n), thus
we interpret ky(n) and z(n) as the ideal and noisy sensor data at
pixel location n, respectively.

2.2. Review: Digital Camera Pipeline

Given the sensor data z(n), the goal of the digital camera pipeline
is to estimate the color image x(t)—note that we use the continu-
ous representation of the image here in order to better compare im-
ages captured at different sampling rates. As stated earlier, one cost-
effective measure to increase spatial resolution is simply to shrink
the device footprint in hardware. However, device physics and sim-
ple geometric arguments (fewer incident photons, for example) dic-
tate that this increase in spatial resolution will be accompanied by
a corresponding increase in sensor noise effects. To understand this
trade-off, we first review a number of signal processing steps or mod-
ules that comprise a camera pipeline after the acquisition of data:

• The spatial subsampling due to the implementation of color
filter array is approximately inverted through demosaicking—
yielding a complete tristimulus value at each pixel location.
Assuming y (ideal sensor data) as an input to the demosaick-
ing algorithm, demosaicking is a demultiplexing of frequency
multiplexed signals {xα, x�, xβ} [1, 10].

• Because the color coordinates defined by the sensitivity of
the color filters c may not correspond exactly to the standard-
ized color space (such as sRGB space), the resulting tristim-
ulus values undergo a color space conversion (change of ba-
sis) via pixel-wise multiplication by a predetermined matrix
M ∈ R

3×3, x0(n) = M0x(n). Additional color space
conversion may be required for image compression, which
usually operates in an opponent color space.

• Given the variability of the Poisson process, the Poisson mean
y is often inaccessible and must be estimated from z. Alter-
natively, demosaicking methods applied to z as a proxy for y
yield a “noisy” estimate of x.

• Human visual systems make adjustments to the color to ac-
count for variations in illuminant and the environment. Linear
white-balance correction—needed to match the camera out-
put with the perceived color—is a function of the estimated
scene illuminant and typically takes place either before de-
mosaicking or concurrently with the color space conversion:
x1(n) = M1(illuminant)x(n).

• A point-wise nonlinearity termed the inverse gamma func-
tion Γ−1 : R → R is applied to the color-corrected tristimu-
lus value x to yield the display stimulus u = [u1, u2, u3]

T ,
ui(n) = Γ−1{xi(n)}. This gamma correction step will
undo the effects of nonlinearity Γ inherent in display devices
(i.e., Γ(u) is linear with respect to x).

Each of the key components in a typical camera pipeline is aimed
at correcting or enhancing certain aspects of the hardware or human-
hardware interface—and in particular, the demosaicking, color space
conversion, and Poisson mean estimation steps are explicitly coupled
to the image data acquisition process highlighted in the previous sec-
tion. The key challenges for advancing the digital camera pipeline
from a signal processing perspective, therefore, involve resolution-
distortion trade-offs as manifested by the color image sensor itself—
the subject of the rest of this article.

3. RESOLUTION-DISTORTION TRADE-OFFS

In this section, we examine the inherent trade-offs between spatial
resolution and signal-dependent measurement noise and other dis-
tortions via spatio-spectral sampling theory [1]. The main result of
our analysis is that noise dependency is increasingly severe as sensor
size decreases.

3.1. Resolution and Poisson Process

For analytical tractability, let h(t) be an ideal low-pass filter. Com-
bining (1), (2), and the effects of the Poisson process, the measure-
ment z(n) can be characterized as:

E[z(n)|x] = Var(z(n)|x) (3)

= kλ{h ∗ x�}(τn) + kνhλ
(
cα(n)xα(τn) + cβ(n)xβ(τn)

)
,

where νh is the DC component of the convolution filter h(t) and
for sufficiently low-bandwidth difference images, h ∗ xα = νhxα

and h ∗ xβ = νhxβ . From the spatio-spectral sampling perspec-
tive, z(n) is a lowpass version of x� (i.e., kλ{h ∗ x�}(τn)) that
has been corrupted by two sources of degradation: aliasing (i.e.,
kλcα(n){h ∗ xα}(τn) + kλcβ(n){h ∗ xβ}(τn)), and the vari-
ability resulting from the Poisson process (i.e. Var(z(n)|x)). Re-
construction amounts to separating x� from these interfering signals
in z(n)—without making any additional assumptions, such as the
local sparsity assumed by contemporary nonlinear demosaicking al-
gorithms [9]. A little algebra will verify that the distortion in z(n)
relative to x�(t) can be measured as:

J(x) =

∥∥∥∥W{z}(t)
kνhλ

− x�(t)

∥∥∥∥
2

,
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where W{z} is the Whittaker-Shannon ideal reconstruction of the
discrete samples z(n) (i.e. orthogonal projection to space of ban-
dlimited functions). The expectation E[J(x)] may further be de-
composed as

E

[∥∥∥∥W{y}(t)
νhλ

− x�(t)

∥∥∥∥
2

+

∥∥∥∥W{z − ky}(t)
kνhλ

∥∥∥∥
2
]

. (4)

Let E[xα] = E[xβ ] = 0 and {xα, x�, xβ} be mutually independent.
Then the first term in (4) expands to:

E[‖{h ∗ x�}/νh − x�‖2 + ‖cαxα + cβxβ‖2]. (5)

The first term in (5) is the degradation due to loss of resolution, and
it is independent of the choice of color filter array and the surface
area of the pixel sensor. The second term in (5) is the aliasing from
CFA sampling, which is independent of the surface area of the pixel
sensor and the resolution. Similarly, the second term in (4) is the
measurement noise; from (3), we see that this is equivalent to

E[Var(z(n)|x)/(kνhλ)2] = {h ∗ x�}(τn)/(kν2
hλ). (6)

The conclusion we draw from the above exercise is that larger
pixel sensor area (i.e. larger k) and panchromatic CFA pattern (i.e. larger
λ) are favorable for reducing the measurement noise. The effects of
the resolution on noise (h and νh) are signal dependent, though k
and h are often inversely coupled, and the trade-off between (5) and
(6) is not straightforward. The expected distortion E[J(x)] can be
evaluated empirically using simulation—choosing widely available
test images for x, Figure 1 shows distortion as a function of sensor
resolution. A fixed value of k means that the overall image sensor
size and integration time is held constant while the sensor surface is
divided up into smaller pixels to increase resolution. The key ob-
servation here is that despite increased resolution, shrinking pixel
sensors may result in more distortion in some cases. The problem is
especially bad when k or x is small (small sensor size, small lens,
low-light environment, etc). The graph also suggests that a better
CFA design reduces distortion far more effectively than increasing
the pixel count.

3.2. Resolution and Crosstalk

Crosstalk, a phenomenon where photon or electron leakages cause
an interaction between neighboring pixels, is a major problem when
the device footprint decreases because of reduced distances between
pixel sensors. Two major contributions to crosstalk we consider here
are optical diffraction and minority carrier diffusion.

Optical diffraction occurs when a high incidence angle of the
light entering the substrate causes the photons to stray away from
the center of the pixel; microlenses can help to reduce this risk [2].
The diffusion is stochastic but mostly linear with respect to the in-
tensity of the light. The incident angle is typically wider for the
pixel sensors far from the lens axis, and thus the light that reaches
photosensitive material can be modeled as spatially-variant convo-
lution: ŷ(n) =

∑
m y(m)f(n, m) where f(n, m) is the location-

dependent impulse response. The precise modeling of f(n, m) as
a function of sensor geometry is an active area of research involving
sophisticated simulation [2, 4]. Nevertheless, location-independent
approximation of the point-spread-function f using ideal low-pass
filters have been suggested [5]. As the coupling between pixels occur
before charge collection, the Poisson noise is spatially uncorrelated,

so that z(n)
i.i.d∼ P(ŷ(n)).

Fig. 1. Distortion with respect to x� as a function of the sensor
resolution while holding the sensor size constant, measured from a
simulation using 24-bit 512×768 images. Solid lines indicate Bayer
CFA [8], dashed lines indicate spatio-spectral CFA design [1].

Minority carrier diffusion deteriorates the signal when photons
stray from the target after the charge is collected [3]. This carrier is
typically deterministic and mostly linear with respect to the signal
strength, and it can be modeled as spatially-invariant convolution:
ẑ(n) =

∑
m z(n − m)g(m), where g(m) is the convolution ker-

nel. Note that the Poisson noise in ẑ is no longer spatially uncor-
related. Motivated by physics, the characteristics of this diffusion
process are crudely modeled as g(n) ∝ e−‖τn‖/L, where L is the
diffusion constant and τ is the sample interval [3].

Using the updated definitions ŷ and ẑ, distortion with crosstalk
is measured as:

Ĵ(x) =

∥∥∥∥ W{ẑ}(t)
kνfνgνhλ

− x�(t)

∥∥∥∥
2

,

where νf and νg are the DC values of the convolution filters f and g.
Breaking down into loss of resolution, aliasing, and noise as before,

E[Ĵ(x)] is equivalent to the sum of the following terms:

E[‖{f ∗ g ∗ h ∗ x�}/(νfνgνh) − x�‖2],

E[‖f ∗ g ∗ {cαxα + cβxβ}‖2], (7)

E[g2 ∗ {f ∗ h ∗ x�}(τn)/(kν2
fν2

gν2
hλ)].

As before, Figure 2 evaluates the expected distortion E[Ĵ(x)] em-
pirically using test images. A rather surprising consequence of (7)
is that the low-pass convolution filters g and f may help suppress
the distortion in ẑ(n) relative to x�(t) because they attenuate the
aliasing components (cαxα + cβxβ), which, owing to the carrier
frequencies cα and cβ , occupy the high-pass region.

The real penalty imposed by crosstalk in the trade-off analysis is
the reconstructibility of difference images xα and xβ , which roughly
correspond to the chrominance of the image. The reconstruction of
xα and xβ depends greatly on the preservation of modulated sig-
nal cαxα + cβxβ . Consider, for example, the amplitude response
of g at the highest modulation frequencies in cα and cβ as a func-
tion of resolution (assuming a fixed overall sensor area). Owing to
the rapid spectral decay of Gaussian filters, the modulated signal
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Fig. 2. Distortion with respect to x� as a function of the sensor
resolution with crosstalk artifacts. Solid lines indicate Bayer CFA
[8], dashed lines indicate spatio-spectral CFA design [1].

cαxα + cβxβ is attenuated very quickly as the pixel sensor geome-
try shrinks. Another important observation is that crosstalk problems
persist regardless of illuminant or noise level, as convolution filters
f and g are linear.

The conclusion we draw from the above is that due to attenu-
ation of chrominance information, crosstalk results in desaturation
of color and increased sensitivity to noise. This confirms our in-
tuition that photon and electron leakage from neighboring pixels re-
sults in linearly combining measurements from different color filters,
thereby deteriorating the quality of information pertaining to color.
Moreover, the analysis in (7) informs us that the estimation of xα

and xβ—formulated as inverse crosstalk problem—would involve
properly scaling the chrominance by the inverse of the amplitude
response of f and g at the modulation frequencies induced by a par-
ticular CFA pattern.

4. DISCUSSION AND CONCLUSION

Motivated by the perspective that noise, aliasing, and artifacts in an
imaging system lead to more complicated and expensive signal pro-
cessing steps in digital camera pipeline, we have offered here a signal
processing perspective on trade-offs between resolution and distor-
tion as device footprints continue to shrink. We characterized the
color image sensor in terms of physical properties such as spatio-
temporal integration, color filter array, Poisson process, and elec-
tron/photon leakage, and analytically and numerically evaluated the
distortion in the measured sensor data. We found that advantages to
shrinking pixel sensor geometries as a means to increase resolution
in a cost-effective manner may be overridden by Poisson noise in
the signal measurement process, and that better CFA designs have
the potential to reduce distortion far more effectively. Our anal-
ysis of resolution-crosstalk trade-offs revealed the mechanism by
which crosstalk desaturates the colors while sometimes improving
estimates for the luminance component.
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